
LSF/MM/BPF Summit 2023	
dragan@stancevic.com

NIL-MIGRATION
(Nearly Instantaneous Live Migration of Virtual Machines, Containers, and Processes)	

BoF: VM Live Migration over CXL memory

1

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

BOF PREAMBLE
• Will give high-level overview	

• Would like to discuss/brainstorm ideas	

• Just starting to tackle this problem, don’t have all the answers yet.	

• Project assumes CXL 3.0 spec devices, with shared memory 
features	

• Using VM as an example, but concept could be applied to 
containers and processes

2

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

THEORETICAL GOAL
• Traditional LM: pre-copy, quiesce, 2nd-copy, un-quiesce	

• nil-migration: migrate_pages, pass by reference/the handoff	

• Remove the need to freeze memory (quiesce, 2nd-copy), by redirecting 
where you take page faults	

• Aim to make VM live migration as instantaneous as multitasking	

• VM migration could occur in-between allocated processor slices	

• When a VCPU uses up its allocated processor slice on the source hypervisor, 
the next time slice the VCPU receives would be on the target hypervisor. 

3

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

TOPOLOGY

• Traditional CPU+memory 
on one NUMA node	

• CXL.mem device; seen as a 
separate compute-less 
NUMA node	

• Connected via CXL switch

4

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

FIRST STEP - DECOUPLE

• Decouple the VM memory 
from the VM compute	

• Migrate the VM memory 
onto one of the compute-
less NUMA nodes.	

• migrate_pages(), etc	

• VM is live and executing

5

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

DECOUPLE COMPLETE
• The VM cpu is executed on a traditional 

NUMA node	

• VM memory footprint is on the cpu-less 
NUMA node	

• VCPU loads and stores are redirected to 
the CXL.mem device	

• At this point, the VM memory is physically 
stored on a CXL.mem device connected to 
our hypervisor through a CXL switch	

• Use set_mempolicy and Co to prevent 
pages from migrating back out of CXL.mem	

• VM is live and executing 

6

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

TOPOLOGY - SHARED

• Add additional hypervisor 
accessing the same 
CXL.mem device where 
our VM is, through the same 
CXL switch. 	

• We'll call this new 
hypervisor the target(T) 
hypervisor, and the original 
one we'll call the source(S).

7

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

THE HANDOFF
• The next step of nil-migration is to “recreate” 

the compute portion of the VM on the target 
hypervisor and destroy it on the source.	

• In a perfect world, this would be as simple as a 
process context switch	

• When the VCPU uses up it’s processor time 
slice on the source, the context is stored in 
memory.	

• And the context is simply restored on the target 
hypervisor	

• The hypervisors would need a way to 
cooperate on the shared memory.	

• There would be a need for some kind of in-
memory handoff ABI between the hypervisors

8

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

FINAL STEP - RECOUPLE
• After the handoff, the VM is executing on 

the target hypervisor and the VM memory 
footprint is on the compute-less NUMA 
node backed by the CXL.mem device.	

• At this point, the VM compute and 
memory are still split between the 
traditional NUMA node and the 
compute-less NUMA node. We want to 
merge them back again.	

• Migrate the VM memory onto one of the 
traditional NUMA nodes (CPU+memory)	

• migrate_pages(), etc	

• VM is live and executing

9

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

RECOUPLE COMPLETE

• The VM compute and 
memory are now on a 
traditional numa node of 
the target hypervisor.	

• VM is live and executing

10

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

PROJECT INFO
• nil-migration is in its early stages of design/development, all development 

and prototyping are/will be done using qemu.	

• As of this moment, CXL aspects needed for nil-migration to function are 
not fully implemented neither in the kernel or qemu.	

• homepage https://nil-migration.org/	

• nil-migration@lists.linux.dev mailing list hosted at https://
subspace.kernel.org/lists.linux.dev.html	

• Cc-ing: linux-cxl@vger.kernel.org and/or linux-mm@kvack.org
11

mailto:dragan@stancevic.com
https://nil-migration.org/
mailto:nil-migration@lists.linux.dev
https://subspace.kernel.org/lists.linux.dev.html
mailto:cxl@vger.kernel.org
mailto:linux-mm@kvack.org


DISCUSSION

12



EXTRA SLIDES

13



LSF/MM/BPF Summit 2023	
dragan@stancevic.com

RACK TOPOLOGY
• Multiple memory devices per rack, 

connected to various hypervisors to form a 
hypervisor traversal graph	

• A VM would migrate across a single hop, or 
a few hops to reach it's destination 
hypervisor	

• For the lack of better word, this would be 
your "migration namespace" to migrate the 
VM across the rack.	

• The critical connections in the graph are 
hostfoo04 and hostfoo09, and those you'd 
use if you want to pop the VM into a 
different "migration namespace", for example 
a different rack or maybe even a pod

14

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

HYPERVISOR CLUSTERING

• Another aspect of nil-
migration applicability is 
Hypervisor Clustering, 
where in case of a crash of 
hypervisor S, hypervisor T 
can take over the execution 
of the VM

15

mailto:dragan@stancevic.com


LSF/MM/BPF Summit 2023	
dragan@stancevic.com

LOAD BALANCING
• Hypervisor clustering could also potentially be 

used for quasi-real-time CPU load distribution 
or CPU disaggregation.	

• One hypervisor could be running one set of 
the VM's virtual CPUs, and a different 
hypervisor could run another set of virtual 
CPUs from the same VM.	

• Since memory now becomes a discrete 
component, you are on the flip side 
disaggregating CPU as well	

• You can dynamically attach more CPU power 
to this discrete shared memory by adding 
additional hypervisors, in essence creating a 
sort of hybrid of both vertical and horizontal 
expansion. 

16

mailto:dragan@stancevic.com

