NIL-MIGRATION

(Nearly Instantaneous Live Migration of Virtual Machines, Containers, and Processes)
BoF:VM Live Migration over CXL memory

LSF/MM/BPF Summit 2023
dragan@stancevic.com



mailto:dragan@stancevic.com

BOF PREAMBLE

- Wil give high-level overview
- Would like to discuss/brainstorm ideas
* Just starting to tackle this problem, don't have all the answers yet.

* Project assumes CXL 3.0 spec devices, with shared memory

features

« Using VM as an example, but concept could be applied to
containers and processes

LSF/MM/BPF Summit 2023
0 dragan@stancevic.com



mailto:dragan@stancevic.com

THEORETICAL GOAL

Traditional LM: pre-copy, quiesce, 2Znd-copy, un-quiesce
nil-migration: migrate_pages, pass by reference/the handoft

Remove the need to freeze memory (quiesce, 2nd-copy), by redirecting
where you take page faults

Aim to make VM live migration as instantaneous as multitasking
VM migration could occur in-between allocated processor slices

When a VCPU uses up its allocated processor slice on the source hypervisor,
the next time slice the VCPU receives would be on the target hypervisor.

LSF/MM/BPF Summit 2023
E dragan@stancevic.com



mailto:dragan@stancevic.com

TOPOLOGY

* Traditional CPU+memory
on one NUMA node

« CXL.mem device: seen as a

separate compute-less
NUMA node

« Connected via CXL switch

LSF/MM/BPF Summit 2023
4 dragan@stancevic.com



mailto:dragan@stancevic.com

RS | S 1 EP - DECOURSS

i Ecolple the VM memory
If@Rsine VIM compute

ilicratethe VM memory

onto one of the compute-
less NUMA nodes.

* migrate_pages(), etc

- VM s live and executing



mailto:dragan@stancevic.com

pEC OUPLE COMPLE S

« The VM cpu Is executed on a traditional
NUMA node

* VM memory footprint is on the cpu-less
NUMA node

« VCPU loads and stores are redirected to
the CXL.mem device

CXL.mem device

* At this point, the VIM memory is physically
stored on a CXL.mem device connected to
our hypervisor through a CXL switch

« Use set_mempolicy and Co to prevent
pages from migrating back out of CXL.mem

* VM is live and executing

LSF/MM/BPF Summit 2023
6 dragan@stancevic.com



mailto:dragan@stancevic.com

« We'll call this new

TOPOLOGY - SHARED

 Add additional hypervisor
accessing the same
CXL.mem device where

our VM s, through the same
CXL switch.

hypervisor the target(T)
hypervisor, and the original
one we'll call the source(s).

LSF/MM/BPF Summit 2023
7k dragan@stancevic.com



mailto:dragan@stancevic.com

THE HANDOFRF

The next step of nil-migration is to “recreate”
the compute portion of the VM on the target
hypervisor and destroy it on the source.

In a perfect world, this would be as simple as a
process context switch

When the VCPU uses up It's processor time
slice on the source, the context is stored In
memory.

And the context Is simply restored on the target
hypervisor

The hypervisors would need a way to
cooperate on the shared memory.

There would be a need for some kind of in-
memory handoff ABl between the hypervisors

CXL mem device

LSF/MM/BPF Summit 2023
dragan@stancevic.com



mailto:dragan@stancevic.com

FINAL STEP - RECOUPLE

« After the handoff, the VM Is executing on
the target hypervisor and the VIM memory
footprint is on the compute-less NUMA
node backed by the CXL.mem device.

* At this point, the VIM compute and
memory are still split between the
traditional NUMA node and the
compute-less NUMA node.VWe want to
merge them back again.

» Migrate the VM memory onto one of the
traditional NUMA nodes (CPU+memory)

* migrate_pages(), etc

B lisive and executing

CXL mem device

LSF/MM/BPF Summit 2023
dragan@stancevic.com



mailto:dragan@stancevic.com

BRECOUPLE COMPLETS

B compute and
Memory are now on a

traditional numa node of
the target hypervisor.

* VM is live and executing



mailto:dragan@stancevic.com

PROJECT INFO

nil-migration Is In 1ts early stages of design/development, all development
and prototyping are/will be done using gemui.

As of this moment, CXL aspects needed for nil-migration to function are
not fully implemented nerther in the kernel or gemui.

homepage https://nil-migration.org/

nil-migration@lists.linux.dev mailing list hosted at https://

subspace.kernel.org/lists.linux.dev.ntml

Cc-ing: linux-cxl@vgerkernel.org and/or [inux-mm@kvack.org

LSF/MM/BPF Summit 2023
[l dragan@stancevic.com



mailto:dragan@stancevic.com
https://nil-migration.org/
mailto:nil-migration@lists.linux.dev
https://subspace.kernel.org/lists.linux.dev.html
mailto:cxl@vger.kernel.org
mailto:linux-mm@kvack.org

DISCUSSION



EXTRA SLIDES



RACK TOPOLOGY

Multiple memory devices per rack,
connected to various hypervisors to form a
hypervisor traversal graph

A VM would migrate across a single hop, or
a few hops to reach it's destination
hypervisor

For the lack of better word, this would be
your "migration namespace” to migrate the
VM across the rack.

The critical connections in the graph are
hostfoo04 and hostfoo09, and those you'd
use If you want to pop the VM into a
different "migration namespace”, for example
a different rack or maybe even a pod

LSF/MM/BPF Summit 2023
dragan@stancevic.com



mailto:dragan@stancevic.com

HYPERVISOR CLUSTERING

* Another aspect of nil-
migration applicability Is
Hypervisor Clustering,

where In case of a crash of
hypervisor S, hypervisor T

can take over the execution
of the VM



mailto:dragan@stancevic.com

L OAD BALANCING

 Hypervisor clustering could also potentially be
used for quasi-real-time CPU load distribution
or CPU disaggregation.

One hypervisor could be running one set of
the VM's virtual CPUs, and a different
hypervisor could run another set of virtual
CPUs from the same VM.

» Since memory now becomes a discrete
component, you are on the flip side
disaggregating CPU as well

You can dynamically attach more CPU power
to this discrete shared memory by adding
addrtional hypervisors, in essence creating a
sort of hybrid of both vertical and horizontal
expansion.

CXL mem device

LSF/MM/BPF Summit 2023
dragan@stancevic.com



mailto:dragan@stancevic.com

